Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
ACS Appl Mater Interfaces ; 16(3): 3001-3018, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38195388

RESUMO

Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.

2.
J Glob Health ; 14: 04034, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214316

RESUMO

Background: Whether and to what extent multiple healthy lifestyles affect the longevity of people with disabilities, including those in basic activities of daily living, mobility, vision, hearing and cognition, is crucial to policymakers. We aimed to determine the impact of combined lifestyles on life expectancy (LE) lived with and without five disabilities. Methods: We recruited participants (n = 15 121 from the China Longitudinal Healthy Longevity Survey between 2008 and 2018. Healthy lifestyle levels were estimated from six factors: smoking, drinking, physical exercise, diet, cognitive activity, and sleep, which we categorised as favourable and unfavourable using the latent class growth mixture model throughout the follow-up period. We used Multi-state Markov models to assess the different disability stages of LE. Results: Of the total LE at age 65, older adults with a favourable lifestyle spent 59.60% (disability-free LE (DFLE) = 10.24 years) without five disabilities in combination, whereas those with unfavourable lifestyle spent 56.74% (DFLE = 7.28 years). Furthermore, the percentage of DFLE was 64.98 (7.71 years) and 68.38 (9.91 years) in males with unfavourable and favourable lifestyle levels, respectively, and 47.92 (6.62 years) and 55.12 (10.30 years) for females. Compared to older adults with low socioeconomic status (SES) and unfavourable lifestyle level, those with lower SES and favourable lifestyle level had more 3.77 years of DFLE, those with higher SES and unfavourable lifestyle level had more 1.94 years, as well as those with higher SES and favourable lifestyle level had more 5.10 years at age 65. Corresponding associations were found separately for each of the five individual disabilities. Conclusions: A favourable lifestyle level was associated with longer total LE along with a higher proportion of DFLE and may contribute to narrowing socioeconomic health inequalities. Policymakers should develop lifestyle interventions and scale up rehabilitation services in primary care, thereby delaying disabilities to later ages, especially in low- and middle-income countries.


Assuntos
Atividades Cotidianas , Pessoas com Deficiência , Masculino , Feminino , Humanos , Idoso , Expectativa de Vida , Estilo de Vida Saudável , China
3.
Int J Biol Macromol ; 259(Pt 2): 129200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218266

RESUMO

Food packaging films play a vital role in preserving and protecting food. However, due to their non-biodegradability, conventional packaging materials have led to significant environmental pollution. To overcome this hurdle, we have developed safe, innovative, sustainable and biodegradable packaging materials that can effectively extend the shelf life of food. In this study, two types of cellulose materials cellulose nanofibers (CNF) and carboxymethyl cellulose (CMC) with complementary roles were combined to prepare nanocellulose composite films with high transparency (90.3 %) of a certain thickness (30 ± 0.019 µm) by solution casting method, and their mechanical properties were further optimized by the addition of plasticizer-glycerol (Gly) and cross-linking agent-glutaraldehyde (GA), so as to maintain the strong tensile strength (≈112.60 MPa) and better malleability (4.12 %). In addition, we loaded the natural active agent tea polyphenols (TPs) with different concentrations to study the inhibition effect on E.coli and S.aureus and to simulate food packaging. Finally, we also found that the synthesized nanocellulose composite films can also achieve rapid degradation in a short time through soil burial, water flushing and immersion. The excellent performance demonstrated in this study provides reference value for further replacing petroleum-based materials with biomass materials in the field of food packaging.


Assuntos
Antibacterianos , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Água , Glutaral , Celulose
4.
J Biomater Sci Polym Ed ; 35(1): 45-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37773055

RESUMO

Bacterial infections pose a significant threat to human health and safety, necessitating the urgent resolution of the problem through the development and implementation of highly effective antibacterial agents. However, the emergence of multidrug-resistant bacteria has diminished the satisfactory effectiveness of antibacterial treatments. To overcome this obstacle, we developed effective antibacterial agents by chemical reduction for inhibiting bacterial proliferation and inducing membrane damage. Specifically, four different types of chitosan/Ag nanoparticle (CS-AgNPs-i) (i-1, 2, 3, 4) complexes were synthesized by varying the quantity of chitosan added during the synthesis process. We found that the amount of CS does not affect the morphology and size of CS-AgNPs-i, which remained at approximately 20 nm and all CS-AgNPs were mostly spherical. The zeta potential measurements indicated that the surface of CS-AgNPs carries a positive charge. Notably, elevating the chitosan concentration led to a more pronounced antibacterial impact, particularly evident in its interaction with the peptidoglycan layer on the bacterial surface. Our experimental results undeniably establish the potent antibacterial efficacy of CS-AgNPs against both Escherichia coli and Staphylococcus aureus. Employing live/dead bacterial staining, we reveal the marked capability of CS-AgNPs to effectively hinder bacterial proliferation. Furthermore, our experimental investigations revealed that CS-AgNPs possess broad-spectrum antimicrobial activity. The results of in vitro cytotoxicity experiments substantiated the high biocompatibility of CS-AgNPs with elevated chitosan loading. The study provides valuable insights into the development of nano-antibacterial agents that exhibit significant potential as a substitute to replace traditional antibiotics for medical applications.


Assuntos
Quitosana , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Quitosana/farmacologia , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus , Escherichia coli , Testes de Sensibilidade Microbiana
5.
Biomacromolecules ; 25(1): 522-531, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38087829

RESUMO

Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.


Assuntos
Ferroptose , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Humanos , Sorafenibe/farmacologia , Terapia Fototérmica , Ferro , Nanopartículas/química , Neoplasias/terapia , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
6.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764495

RESUMO

Our previous study found that the intravesical perfusion of metformin has excellent inhibitory effects against bladder cancer (BC). However, this administration route allows the drug to be diluted and excreted in urine. Therefore, increasing the adhesion of metformin to the bladder mucosal layer may prolong the retention time and increase the pharmacological activity. It is well known that chitosan (Cs) has a strong adhesion to the bladder mucosal layer. Thus, this study established a novel formulation of metformin to enhance its antitumor activity by extending its retention time. In this research, we prepared Cs freeze-dried powder and investigated the effect of metformin-loaded chitosan hydrogels (MLCH) in vitro and in vivo. The results showed that MLCH had a strong inhibitory effect against proliferation and colony formation in vitro. The reduction in BC weight and the expression of tumor biomarkers in orthotopic mice showed the robust antitumor activity of MLCH via intravesical administration in vivo. The non-toxic profile of MLCH was observed as well, using histological examinations. Mechanistically, MLCH showed stronger functional activation of the AMPKα/mTOR signaling pathway compared with metformin alone. These findings aim to make this novel formulation an efficient candidate for managing BC via intravesical administration.


Assuntos
Quitosana , Metformina , Neoplasias da Bexiga Urinária , Animais , Camundongos , Bexiga Urinária , Administração Intravesical , Metformina/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Modelos Animais de Doenças , Hidrogéis
7.
Materials (Basel) ; 16(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512182

RESUMO

According to the shear capacity test results of six steel-fiber-reinforced high-strength concrete (SFHSC) corbels with welded-anchorage longitudinal reinforcement under concentrated load, the effects of shear span ratio and steel fiber volume fraction on the failure mode, cracking load and ultimate load of corbel specimens were analyzed. On the basis of experimental research, the shear transfer mechanism of corbel structure was discussed. Then, a modified softened strut-and-tie model (MSSTM), composed of the diagonal and horizontal mechanisms, was proposed, for steel-fiber-reinforced high-strength concrete corbels. The contributions of concrete, steel fiber and horizontal stirrups to the shear bearing capacity of the corbels were clarified. A calculation method for the shear bearing capacity of steel-fiber-reinforced high-strength concrete corbels was established and was simplified on this basis. The calculation results of the model were compared with the test values and calculation results of the GB50010-2010 code, the ACI318-19 code, the EN 1992-1-1 code and the CSA A23.3-19 code. The results showed that the concrete corbel with small shear span ratio mainly has two typical failure modes: shear failure and diagonal compression failure. With the increase in shear span ratio, the shear capacity of corbels decreases. Steel fiber can improve the ductility of a reinforced concrete corbel, but has little effect on the failure mode of the diagonal section. The calculated values of the national codes were lower than the experimental values, and the results were conservative. The theoretical calculation values of the shear capacity calculation model of the corbels were close to the experimental results. In addition, the model has a clear mechanical concept considering the tensile properties of steel-fiber-reinforced high-strength concrete and the influence of horizontal stirrups, which can reasonably reflect the shear transfer mechanism of corbels.

8.
J Am Chem Soc ; 145(31): 17253-17264, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37498730

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu-N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm-2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu-N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu-N3 sites with a short distance could promote the C-C coupling synergistically.

9.
Langmuir ; 39(29): 10145-10153, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436959

RESUMO

Molybdenum-based nanomaterials have shown promise for anticancer treatment due to their strong photothermal and redox-activated capabilities. Herein, we have fabricated cerium-doped MoOx (Ce-MoOv) with tunable Mo/Ce molar ratios by a one-pot method and investigated their effect on chemodynamic therapy (CDT) and photothermal therapy (PTT). It is found that Ce-MoOv can self-assemble into nanoclusters in acidic conditions and the increasing Ce amount will generate oxygen vacancy defects and induce the valence change of Mo6+/Mo5+ and Ce4+/Ce3+, which leads to strong near-infrared absorption with high photothermal conversion efficiency of 71.31 and 49.86% for 808 and 1064 nm. Other than photothermal conversion, the materials demonstrate pH-/glutathione (GSH)-activated photoacoustic (PA) imaging capability in vitro. In addition, Ce-MoOv acts as a CDT reagent capable of converting endogenous H2O2 to two types of reactive oxygen species (•OH, 1O2) while depleting GSH. Ce-MoOv demonstrates an excellent therapeutic effect against HCT116 cells and effectively reduces the intracellular GSH level and significantly increases the number of reactive radicals under 1064 nm laser irradiation as compared with the no-laser group in vitro. This work provides a new paradigm using lanthanide-doped polymetallic oxides for pH-/GSH-responsive photothermal/chemodynamic therapy with PA imaging ability.


Assuntos
Nanopartículas , Neoplasias , Humanos , Óxidos , Peróxido de Hidrogênio , Molibdênio , Microambiente Tumoral , Glutationa , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
10.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6600-6612, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212020

RESUMO

This study aimed to provide data support for resource utilization of the stems and leaves of Astragalus membranaceus var. mongholicus(SLAM) by analyzing and evaluating the chemical constituents. The crude protein, crude fiber, and soluble saccharide of SLAM were analyzed by Kjeldahl method, filtration method, and UV-Vis spectrophotometry, respectively. The nucleosides, amino acids, flavonoids, and saponins of SLAM were analyzed by ultraperformance liquid chromatography-triple quadrupole mass spectrometry(UPLC-TQ-MS). Combined with principal component analysis(PCA), the quality difference of resource components of SLAM was comprehensively evaluated. The results showed that the average content of crude protein, crude fiber, total polysaccharide, and redu-cing sugar in SLAM was 5.11%, 30.33%, 11.03 mg·g~(-1), and 31.90 mg·g~(-1), respectively. Six nucleosides, 15 amino acids, 22 flavonoids, and one saponin were detected, with an average content of 1.49 mg·g~(-1), 6.00 mg·g~(-1), 1.86 mg·g~(-1), and 35.67 µg·g~(-1), respectively. The content of various types of chemical components in SLAM differed greatly in different harvesting periods and growing years. The results of PCA showed that the quality of SLAM produced in Ningxia was superior. The results can provide references for the utilization of SLAM.


Assuntos
Astragalus propinquus , Saponinas , Astragalus propinquus/química , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides/análise , Folhas de Planta/química , Aminoácidos , Saponinas/análise
11.
Nat Commun ; 13(1): 6395, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302919

RESUMO

Dissipative Kerr soliton (DKS) frequency combs-also known as microcombs-have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only adds new degrees of freedom to ultrafast laser technology, but also provides new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry-Pérot (FP) mesoresonator based on graded index multimode fiber (GRIN-MMF). Complementing the two-step pumping scheme with a cavity stress tuning method, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond (averaging times up to 25 µs) represent improvements of 25× and 2.5×, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP mesoresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

12.
Light Sci Appl ; 11(1): 296, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224184

RESUMO

Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton's cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

13.
Langmuir ; 38(20): 6472-6480, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35544954

RESUMO

A hydrophobic surface or coating is required for surface protection, anti-fouling, adhesion, and other applications. For the achievements of hydrophobic properties, fluorine-based coatings, such as the introduction of trifluoromethyl or difluoromethylene groups, are conventionally employed. Recent developments in synthetic chemistry have indicated other organic fluoroalkyl groups that are suitable for achieving a more hydrophobic surface. In this study, we focused on the hydrophobic properties of the pentafluorosulfanyl (-SF5) group. We synthesized polymethacrylates with -SF5 groups or other functional groups (-CF3, -CH3, and -H) in their side chains and evaluated their hydrophobicity based on contact angles of water and ethylene glycol and the affinities of their films to water through neutron reflectivity measurements to demonstrate the superior hydrophobic properties of the -SF5 group. The water contact angle on the polymethacrylate film with -SF5 groups was larger, which suggested that the surface free energy was lower than that of the other polymethacrylate thin films with pendant side chains of -CF3, -CH3, and -H. In addition, the fitting analyses of the neutron reflectivity profiles of the thin polymer films in contact with air and water revealed the lowest affinity between water and the surface of polymethacrylate films with -SF5 groups among the films of the synthesized polymers. Thus, we demonstrated the potential of pentafluorosulfanyl groups as advanced hydrophobic groups.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35627408

RESUMO

BACKGROUND: Many epidemiological studies have recently assessed respiratory mortality attributable to ambient temperatures. However, the associations between temperature change between neighboring days and years of life lost are insufficiently studied. Therefore, we assessed the attributable risk of temperature change between neighboring days on life loss due to respiratory disease. METHODS: We obtained daily mortality and weather data and calculated crude rates of years of life lost for 70 counties in Hunan Province, Central China, from 2013 to 2017. A time-series design with distributed lag nonlinear model and multivariate meta-regression was used to pool the relationships between temperature change between neighboring days and rates of years of life lost. Then, we calculated the temperature change between neighboring days related to average life loss per death from respiratory disease. RESULTS: The total respiratory disease death was 173,252 during the study period. The association between temperature change and years of life lost rates showed a w-shape. The life loss per death attributable to temperature change between neighboring days was 2.29 (95% CI: 0.46-4.11) years, out of which 1.16 (95% CI: 0.31-2.01) years were attributable to moderately high-temperature change between neighboring days, and 0.99 (95% CI: 0.19-1.79) years were attributable to moderately low-temperature change between neighboring days. The temperature change between neighboring days related to life loss per respiratory disease death for females (2.58 years, 95% CI: 0.22-4.93) and the younger group (2.97 years, 95% CI: -1.51-7.44) was higher than that for males (2.21 years, 95% CI: 0.26-4.16) and the elderly group (1.96 years, 95% CI: 0.85-3.08). An average of 1.79 (95% CI: 0.18-3.41) life loss per respiratory disease death was related to non-optimal ambient temperature. CONCLUSIONS: The results indicated that more attention should be given to temperature change, and more public health policies should be implemented to protect public health.


Assuntos
Transtornos Respiratórios , Doenças Respiratórias , Idoso , China/epidemiologia , Temperatura Baixa , Feminino , Humanos , Masculino , Doenças Respiratórias/epidemiologia , Temperatura
15.
Opt Lett ; 47(1): 122-125, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34951897

RESUMO

Kerr microcombs hold the promise of bringing frequency combs onto the chip and into a variety of applications requiring low size, weight, power, and cost. However, reliable Kerr microcomb generation is hindered by the thermal effect and multistability of dissipative Kerr solitons (DKSs). Past approaches toward Kerr microcomb reliability include either deterministic single-soliton generation or self-starting soliton behavior but not both. Here we describe a regime of DKSs that is both deterministic and self-starting, in which only a single soliton can stably exist. We term this new DKS regime "monostable DKSs" (MS-DKSs) as all other optical behaviors, such as continuous-wave-only and multiple solitons, are fundamentally forbidden by the design. We establish a graphical model to describe MS-DKSs and discuss the design principles of MS-DKSs. We numerically demonstrate the MS-DKS behavior in an example periodically poled lithium niobate microring resonator.

16.
Environ Sci Pollut Res Int ; 29(11): 15791-15799, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34633619

RESUMO

BACKGROUND: In the context of global climate change, studies have focused on the ambient temperature and mortality of cardiovascular diseases (CVDs). However, little is known about the effect of ambient temperature on year of life lost (YLL), especially the life loss per death caused by ambient temperature. In this study, we aimed to assess the relationship between ambient temperature and life loss and estimate the impact of ambient temperature on life loss per death. METHODS: We collected daily time series of mortality and meteorological data from 70 locations in Hunan province, central China, in periods ranging from Jan. 1, 2013, to Dec. 31, 2017. Crude rates of YLL were calculated per 100,000 people per year (YLL/100,000 population) for each location. A distributed lag nonlinear model and multivariate meta-regression were used to estimate the associations between ambient temperature and YLL rates. Then, the average life loss per death attributable to ambient temperature was calculated. RESULTS: There were 711,484 CVD deaths recorded within the study period. The exposure-response curve between ambient temperature and YLL rates was inverted J or U-shaped. Relative to the minimum YLL rate temperature, the life loss risk of extreme cold temperature lasted for 10 to 12 days, whereas the risk of extreme hot temperature appeared immediately and lasted for 3 days. On average, the life loss per death attributable to non-optimum ambient temperatures was 1.89 (95% CI, 1.21-2.56) years. Life loss was mainly caused by cold temperature (1.13, 95% CI, 0.89­1.37), particularly moderate cold (1.00, 95% CI, 0.78­1.23). For demographic characteristics, the mean life loss per death was relatively higher for males (2.07, 95% CI, 1.44­2.68) and younger populations (3.72, 95% CI, 2.06­5.46) than for females (1.88, 95% CI, 1.21-2.57) and elderly people (1.69, 95% CI, 1.28-2.10), respectively. CONCLUSIONS: We found that both cold and hot temperatures significantly aggravated premature death from CVDs. Our results indicated that the whole range of effects of ambient temperature on CVDs should be given attention.


Assuntos
Doenças Cardiovasculares , Temperatura , Idoso , Doenças Cardiovasculares/mortalidade , China , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Masculino
17.
ACS Biomater Sci Eng ; 7(12): 5497-5505, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34739201

RESUMO

Polydopamine (PDA) has been widely used in biomedical applications including imaging contrast agents, antioxidants, UV protection, and photothermal therapy due to its biocompatibility, metal-ion chelation, free-radical scavenging, and wideband absorption, but its low photothermal efficiency still needs to be improved. In this study, we chelated near-infrared (NIR) sensitive carbon quantum dots on the surface of polydopamine (PDA-PEI@N,S-CQDs) to increase its near-infrared absorption. Surprisingly, although only 4% (w/w) of carbon quantum dots was conjugated on the PDA surface, it still increased the photothermal efficiency by 30%. Moreover, PDA-PEI@N,S-CQDs could also be used as the drug carrier for loading 60% (w/w) of the DOX and achieved stimuli-responsive drug release under lysosomal pH (pH 5.0) and 808 nm laser illumination. For in vitro therapeutic experiment, PDA-PEI@N,S-CQDs showed the remarkable therapeutic performance under 808 nm laser irradiation for killing 90% of cancer cells compared with 50% by pure PDA nanoparticles, and the efficacy was even higher after loading DOX owing to the synergistic effect by photothermal therapy and chemotherapy. This intelligent and effective therapeutic nanosystem based on PDA-PEI@N,S-CQDs showed enhanced photothermal behavior after chelating carbon dots and promoted the future development of a nanoplatform for stimuli-responsive photothermal/chemo therapy.


Assuntos
Nanopartículas , Fototerapia , Carbono , Doxorrubicina , Indóis , Polímeros
18.
Langmuir ; 37(48): 14096-14104, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34808057

RESUMO

Ultrasmall nanoparticles (USNPs) with sizes below 10 nm have shown great potentials in medical applications owing to their outstanding physical, chemical, optical, and biological properties. However, they suffer from a rapid renal clearance and biodegradation rate in the biological environment due to the small size. Liposomes are one of the most promising delivery nanocarriers for loading USNPs because of their excellent biocompatibility and lipid bilayer structure. Encapsulation of USNPs into liposomes in an efficient and controllable manner remains a challenge. In this study, we achieved a high loading of graphene quantum dots (GQDs, ∼4 nm), a typical USNP, into the aqueous core of liposomes (45.68 ± 1.44%), which was controllable by the pressure. The GQDs-loaded liposomes (GQDs-LPs) exhibited a very good aqueous stability for over a month. Furthermore, indocyanine green (ICG), an efficient near-infrared (NIR) photothermal agent, was introduced in the GQDs-LP system that could convert NIR laser energy into thermal energy and break down the liposomes, causing the release of GQDs in 6 min. Moreover, this NIR light-controlled release system (GQDs-ICG-LPs) also exhibited a good photothermal therapeutic performance in vitro, and 75% of cancer cells were killed at a concentration of 200 µg/mL. Overall, the successful development of the NIR light-controlled release system has laid a solid foundation for the future biomedical application of USNPs-loaded liposomes.


Assuntos
Grafite , Nanopartículas , Pontos Quânticos , Lipossomos , Fototerapia
19.
Artigo em Inglês | MEDLINE | ID: mdl-34217845

RESUMO

The complex combined effects of nanoparticles and environmental pollutants in the aqueous environment will inevitably affect aquatic ecosystem and human life. Bisphenol A (BPA) is listed as a typical kind of endocrine disruptors, there is little research about the joint toxicity of co-exposure of SiO2 nanoparticles (NPs) and BPA. In this study, fluorescent ultra-small SiO2 NPs (US-FMSNs) around 6.3 nm were synthesized and investigated for their combined effects with BPA on zebrafish during the early developmental stages within 4-168 h post fertilization (hpf). The results showed that US-FMSNs could accumulate in the chorion, abdomen and intestine in zebrafish. In addition, the different concentration (0.1, 1, 10 µg/mL) of BPA and US-FMSNs (200 µg/mL) demonstrated strong impact on multiple toxic endpoints at four periods (72, 96, 120, 168 hpf). We found US-FMSNs had no significant toxic effect on zebrafish, while BPA (10 µg/mL) showed a degree of developmental toxicity. Compared with single BPA (10 µg/mL) exposure, combined exposure enhanced the developmental toxicity of zebrafish, including increased mortality, decreased hatching rate and body length, and decreased activity of total superoxide dismutase (T-SOD) and increased malondialdehyde (MDA) levels. Our results indicated that US-FMSNs and BPA induced oxidative stress, and the effect of the co-exposure was less than that of single exposure (10 µg/mL). This study hereby provides a basis for the potential ecological and health risks of SiO2 NPs and BPA exposure.


Assuntos
Compostos Benzidrílicos/toxicidade , Nanopartículas/toxicidade , Fenóis/toxicidade , Dióxido de Silício/toxicidade , Animais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Estrogênios não Esteroides/química , Estrogênios não Esteroides/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Am Chem Soc ; 143(16): 6025-6036, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33857372

RESUMO

Stimuli-responsive multifunctional mesoporous silica nanoparticles (MSNs) have been studied intensively during the past decade. A large variety of mesopore capping systems have been designed, initially to show that it could be done and later for biomedical applications such as drug delivery and imaging. On-command release of cargo molecules such as drugs from the pores can be activated by a variety of stimuli. This paper focuses on three noninvasive, biologically usable external stimuli: magnetism, ultrasound, and light. We survey the variety of MSNs that have been and are being used and assess capping designs and the advantages and drawbacks of the nanoplatforms' responses to the various stimuli. We discuss important recent advances, their basic mechanisms, and their requirements for stimulation. On the basis of our survey, we identify fundamental challenges and suggest future directions for research that will unleash the full potential of these fascinating nanosystems for clinical applications.


Assuntos
Luz , Campos Magnéticos , Nanoestruturas/química , Dióxido de Silício/química , Nanomedicina Teranóstica , Ondas Ultrassônicas , Portadores de Fármacos/química , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...